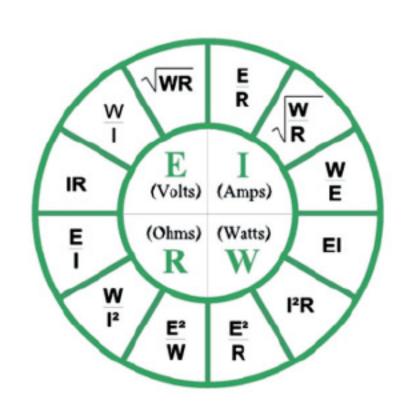


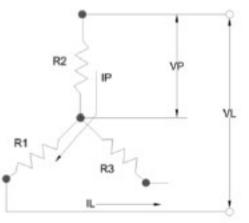
## ■ FORMULAS


## **OHMS**

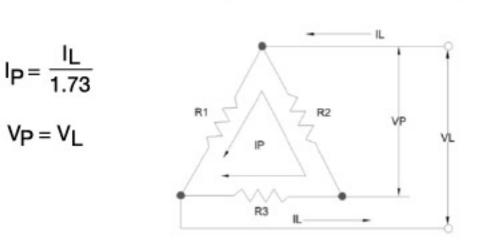
$$Ohms = \frac{VOLTS^2}{WATTS}$$

$$Ohms = \frac{VOLTS}{AMPERES}$$

Ohms = 
$$\frac{\text{WATTS}^2}{\text{AMPERES}}$$


3 PHASE AMPERES = 
$$\frac{\text{TOTAL WATTS}}{\text{VOLTS} \times 1.732}$$




## 3 PHASE WYE (BALANCED LOAD)

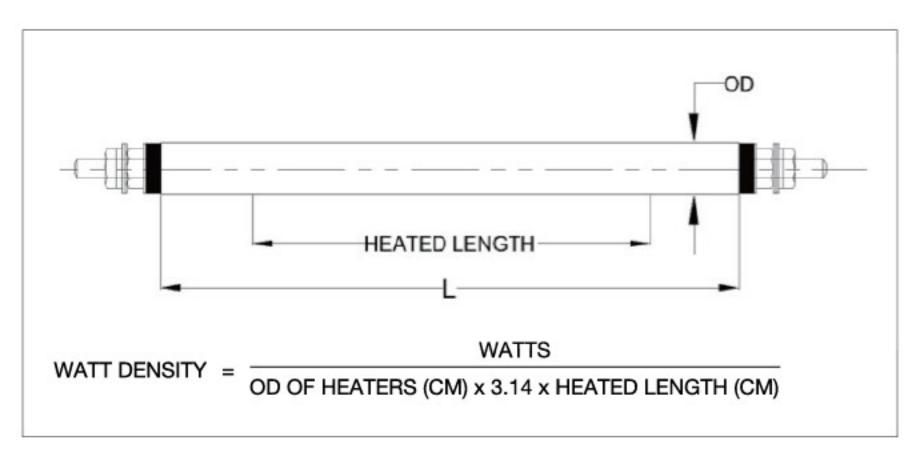
$$IP = IL$$

$$VP = \frac{VL}{1.73}$$
R1



## 3-PHASE DELTA (BALANCED LOAD)




## **ESTIMATE OF WATTAGE REQUIREMENTS**

KW = WEIGHT (KG) x SPECIFIC HEAT x TEMPERATURE RISE (°C) x HEAT UP TIMES (HRS) + LOSS + α 860

## SPECIFIC HEATED

| SUBSTANCE    | KCAL / KG   |
|--------------|-------------|
| ALUMINIUM    | 0.23        |
| COPPER       | 0.1         |
| STAINLESS    | 0.11        |
| GLASS        | 0.186       |
| RUBBER       | 0.27 - 0.48 |
| STEEL / IRON | 0.12        |
| BENZINE      | 0.45        |
| ZINC         | 0.095       |
| WATER        | 1           |
| ALCHOL       | 0.65        |
| HELIUM       | 1.25        |
| ETHYLENE     | 0.4         |
| CO2          | 0.203       |
| NITROGEN     | 0.245       |
| AIR          | 0.237       |

## WATTS DENSITY



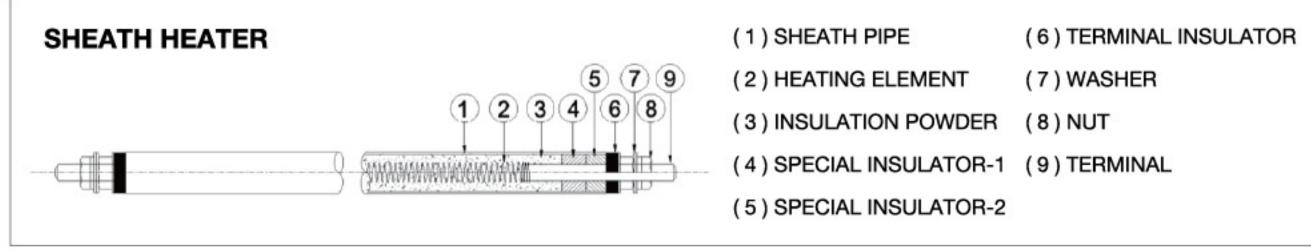


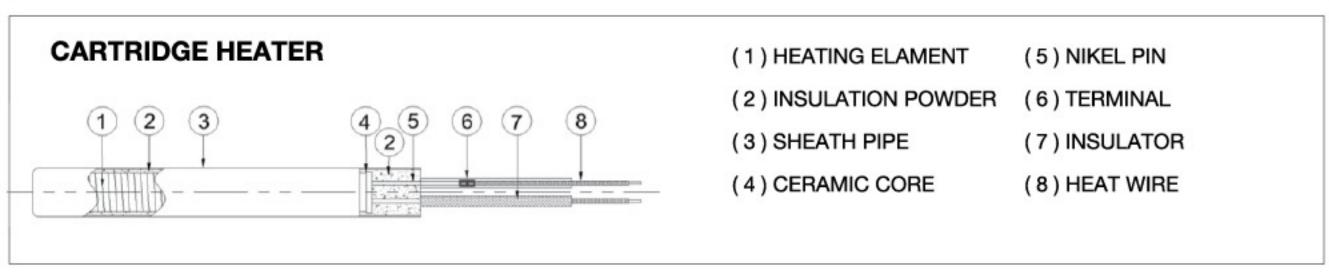
# MAXIMUM WATT DENSITY OF EACH HEATER

| HEATER           | WATTS DENSITY           | MAX<br>TEMPERATURE |
|------------------|-------------------------|--------------------|
| BAND HEATER      | 4 - 5 W/CM <sup>2</sup> | -                  |
| CARTRIDGE HEATER | 15 W/CM <sup>2</sup>    | -                  |
| SHEATH HEATER    |                         |                    |
| • WATER          | 8.0 W/CM <sup>2</sup>   | 100 °C             |
| · MACHINING OIL  | 2.8 W/CM <sup>2</sup>   | 120 °C             |
| · COATING BATH   | 3.8 W/CM <sup>2</sup>   | 200 °C             |
| WITHOUT OIL      | 3.0 W/CM <sup>2</sup>   | 300 °C             |

## USAGE TEMPERATURE OF SHEATH HEATER

| APPLICATION      | TEMPERATURE  |  |
|------------------|--------------|--|
| WATER            | 100 °C       |  |
| AIR              | 120 °C       |  |
| STEAM            | 100 - 450 °C |  |
| OIL              | 260 °C       |  |
| ELECTRIC FURNACE | 540 °C       |  |
| ANNEAL           | 580 °C       |  |


# SHEATH HEATER WITH CURRENT CAPACITY


| SHEATH "OD" | TERMINAL | FITTING | CURRENT |
|-------------|----------|---------|---------|
| Ø7, Ø8      | Ø3.0     | МЗ      | 10A     |
| Ø9, Ø10     | Ø4.0     | M4      | 15A     |
| Ø12, Ø14    | Ø5.0     | M5      | 25A     |
| Ø16         | Ø6.0     | M6      | 35A     |

## **■ PROTECTION TUBE CHOICE**

| APPLICATION | PIPE MATERIAL                        |  |
|-------------|--------------------------------------|--|
| WATER       | SUS316L                              |  |
| AIR         | SUS321, SUS316L,<br>INC800, INC600   |  |
| OIL         | SUS321, STPT                         |  |
| MOLD        | SUS304, SUS321                       |  |
| CORROSION   | SUS316L, INC800,<br>INC600, TITANIUM |  |

## **STRUCTURE OF HEATER**







## APPLICATION



#### **CARTRIDGE HEATER**

Continues to provide superior heat transfer, uniform temperature and resistance to oxidation and corrosion even at high temperatures.

#### **Applications**

- · Molds · Dies
- Platens
   Hot plates



#### **IMMERTION HEATER**

Tubular elements and assemblies are primarily used for direct immersion in water oils, viscous materials, solvents, process well as air and gases.

#### Heating assemblies, including

- · Screw plug · Flange
- Circulation



#### **FINNED HEATER**

Aluminized steel fins are attached in a way that maximizes surface and transferred into the air faster.

#### **Applications**

- Drying ovens
   Air heating
- Ink drying
   Moisture protection



### **TUBULAR HEATER**

Tubular elements and assemblies are primarily used for direct immersion in water, oils, viscous materials, solvents, process well as air and gases.

#### Heating assemblies, including

- Screw plug Flange
- Circulation



## **BAND HEATER**

Operating temperature to 1400°F (760°C) make it possible to safely melt even the newest resins, like peek , Teflon

#### **Applications**

- Extruders
- · Blown film dies
- · Injection molding machines
- Other cylinder heating applications



## STRIP HEATER / PLATE HEATER

The heater resheathed in rust-resistance steel or in stainless steel sheath as it provides strength and good thermal conductivity. These heater are available with various terminal

## Option

Screw / Pin / Flexible lead wire



#### **BOBBIN / PIPE HEATER**

Robbin and pipe heater are inserted into a thermowell, offer a large heated area to the liquid. It is suitable for usage of oil, wax and fat. The advantage of this heater is, it can be removed for repair.



## APPLICATION



#### **HOT RUNNER**

The heater can be formed into a compact coiled nozzle heater for use on plastic injection molding equipment supplying a full 360 degrees of heat with optional distributed wattage.

Flat spiral configurations are used in semiconductor manufacturing while a star wound cable is used for air and gas heating.



#### **ALUMINIUM CATTING HERTER**

The heater part consists of a formed cable or tubular heater cast into aluminum.

For high temperature applications, The part is then customized to meet specific application needs including machining, termination, coatings and assembly

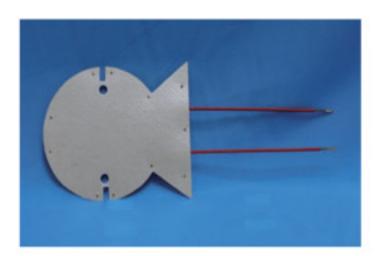


#### **INFRARED CERAMIC HEATER**

Infrared heater provides medium wave infrared energy and fast heat up and cool down. With element temperature around 1700°F (930°C) the heater produces infrared radiation with a peak energy wavelength of 2.5 microns.

#### Applications

- Shrink packaging
   Vulcanizing and curing rubber
   Lamination
- · Drying processes : photos, textiles, coatings and sand core castings.




#### SILICON RUBBER HEATER

Silicone rubber heaters is limited only by the imagination. With these heaters, heat can be placed where it is needed and operating temperatures up to 500°F (260°C)

#### **Applications**

- Computer peripherals such as laser printers
- Curing of plastic laminates
- · Photo processing equipment
- Semiconductor processing equipment
- Medical equipment such as blood analyzers and test tube heaters



## MICA HEATER

Mica heaters are an excellent choice when cost and performance supersede substrate flexibility. Mica is a rigid substrate able to withstand very high temperatures and are suited for applications up to 500°F (260°C). Mica heaters can be configured in a wide range of sizes and watt densities. Mica heaters offer several distinct advantages over other flexible heater technologies, including extremely low leakage, lower material costs, and higher operating temperatures.



#### **QUARTZ /INFRARED HEATER**

Quartz infrared heating elements provide medium wave infrared radiation. They are favoured in industrial applications where a more rapid heater response is necessary, including systems with long heater off cycles.